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The purpose of this study is to investigate how community college 

mathematics instructors reasoned about information regarding students’ 

understanding of trigonometric ideas. We sought to create a dissonance 

between what instructors thought their students understood about 

trigonometry and what the students revealed through paper and pencil tests 

and in-depth interviews. This is part of a larger project that seeks to 

understand the conditions under which proposals for reforming instruction in 

tertiary mathematics are effective. We believe that this knowledge is 

foundational for the development of appropriate learning experiences for 

faculty teaching mathematics in community colleges, a very special tertiary 

education institution in the United States. 

 

Key words: trigonometry, community colleges, teacher professional 

obligations, students’ understanding 

 

Community colleges educate about 50% of all undergraduates in the 

U.S. (Dowd et al., 2006) and nearly 46% of all undergraduate mathematics 

students at U.S. colleges and universities (Blair, Kirkman, & Maxwell, 2013). 

Despite this, surprisingly little research exists on the quality of community 

college mathematics education. Historically, these institutions have assumed 

four functions: (1) academic transfer preparation, (2) terminal vocational 

certification, (3) general education leading to an associate’s degree, and (4) 

community education.  Collectively, the efforts’ goal has been to accomplish 

three diverse aims: democratic equality, social mobility, and social efficiency, 

which for some critics, (e.g., Labaree, 1997) results in unresolved tensions 

over the central aims of education in the United States (p. 196). Current shifts 

in economic organization have even added a fifth function, that of re-training 

workers for a changing economy. These multiple and competing aims and 
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functions set the community college apart from their counterparts in four-year 

colleges and universities.  

Unlike four-year colleges and universities, community colleges 

operate with open access policies that create classrooms with full- and part-

time students of all ages and backgrounds. For instance, a majority of these 

students are under prepared and under resourced and have family and work 

obligations. In addition, the populations at many community colleges also 

have high concentrations of students with disabilities and low English 

proficiency (Goldrick-Rab, 2007). Lastly, faculty in community college are 

not expected to conduct research but to concentrate on teaching (Grubb, 

1999). This results in heavy teaching loads (e.g., 4 to 6 courses per term for 

full-time faculty, for an average of 15 credit hours) and more demands for 

doing administrative work (e.g., advising).   

Even though community college faculty plays a large role within the 

higher education arena, their pedagogies and their thinking about teaching and 

learning has rarely been explored in the literature. Little is known about the 

decision making processes of community college mathematics faculty.  Even 

less is known about the nature of their knowledge of their students’ thinking 

and ways in which their instructional planning may be influenced by such 

knowledge. The purpose of the work we report here was to address this gap. 

In this particular study we seek to better understand the nature of pedagogical 

knowledge and decision making of the community college mathematics 

instructors. Specifically, we asked how do community college mathematics 

instructors responsible for teaching trigonometry interpret information about 

their students’ understanding of inverse trigonometric functions? How do they 

use such information to plan their lessons?  

 

Theoretical Background 

 

The study draws from the theory of practical rationality, a construct 

coined by Herbst and colleagues (Herbst, 2010; Herbst & Chazan, 2003; 

2011; Herbst, Nachlieli, & Chazan, 2011) to characterize the obligations to 

which teachers respond to as they make daily instructional decisions. In the 

most general terms, the theory states that teachers’ instructional decisions are 

governed by (1) norms that are imposed on a teacher teaching a particular 

course, (2) obligations that exist towards the profession in which teachers are 

attached, and (3) personal resources that teachers bring to the environment. 

These three aspects can be used to understand the rationality of teachers’ 

actions as they teach. Herbst and colleagues argue that there are four types of 

obligations that instructors respond to with they teach: to the discipline (they 

are obligated to teach correct mathematics), to the institution (they must abide 

to the constraints the department gives, such as using the same textbook 

across sections or giving three major tests to compute students’ grades), to the 

individual students (the instructors must make sure that the lessons reach 
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individual students, for example by answering questions individual students 

ask), and to the class as a whole (the instructors must make sure that what she 

or he does takes into account the different levels of preparation students bring 

to the class). These professional obligations can explain why teachers may 

choose, for example, not to answer a student question, even though they may 

know that it is a good professional practice to acknowledge all students’ 

questions.  

This framework is useful to our program of research because we seek 

to understand the conditions that may impinge on an instructor’s decision to 

use information about their students’ understanding to teach differently. We 

are most interested in learning why the individuals, in their role as instructors, 

may choose not to use certain information about student learning to plan or 

modify their teaching. As such, in our work our we seek to investigate 

whether and how tuning into students’ thinking, as privileged in K-12 research 

on teacher knowledge (e.g., Hiebert & Wearne, 1993; Stein, Smith, 

Henningsen, & Silver, 2000) might reveal teachers’ dispositions towards 

possible instructional changes. 

 

Method 

 

The data for the study were collected between Fall 2010 and Summer 

2011and concerned teaching and learning in three courses, trigonometry, pre-

calculus, and calculus taught by two instructors, Elizabeth (trigonometry, pre-

calculus) and Emmett (calculus).  The teachers selected the mathematical 

topic to be explored, inverse trigonometric functions, and agreed to (1) collect 

student data on knowledge of this topic prior to and at the conclusion of 

teaching a related unit in their courses, (2) allow us to videorecord those 

lessons in which they taught the topic in the course, (3) allow us to interview 

their students after implementation of those lessons in order to collect 

information about students’ learning, and (4) meet with us to discuss their 

views on the findings of the study so that we could collaboratively determine 

whether and what changes were necessary. At the time of the data collection 

Elizabeth had seven years of college teaching experience, while Emmett had 

16. 

 

Data Collection 

We collected three types of data. First we gave paper and pencil tests of 

knowledge to students from the three courses these two instructors taught 

(trigonometry, pre-calculus, calculus). Second, we have video recordings of 

the lessons in which the two instructors taught inverse trigonometric functions 

in their three courses. Third, we have in depth interviews with students from 

the three courses, in which we discuss responses to their paper and pencil tests 

and ask specific questions about what their instructors did in the video 

recorded lessons (usually conducted the same day of the interview). Fourth we 
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have several in-depth interviews with the instructors that were used to discuss 

general aspects of teaching and learning mathematics at community colleges, 

findings from the paper and pencil tests, findings from the in-depth interviews 

with students, and possible plans for using the information to modify practice. 

Forty-five students took the paper and pencil test across the three courses. The 

test included four questions that sought to determine students’ knowledge of 

inverse trigonometric functions: interpretation of sin
-1

(0.7) and sin
-1

(2), 

construction of the graph of sin
-1

x given the graph of sin(x), behavior of the 

graphs of inverse trigonometric functions, use of the graphs to find specific 

values of the functions, and interpretation of the intervals in the statement 

below (hereafter the Identity Question). The Identity was taken from 

trigonometry textbook that was being used by the instructors: 

 

Cosine - Inverse Cosine Identities 

 

 

Figure 1. Stem for the identity question. 

 

We asked the students to (1) explain what the x in the intervals meant 

and (2) what they thought would happen if x were to be taken outside of those 

intervals. The plan was to collect information on the same content after the 

unit had been taught, but Elizabeth did not administer the second paper and 

pencil test. These questions were chosen because they cover the content that 

teachers must teach. However, they were stated in ways that would require 

demonstration of understanding of the ideas, as all the questions required 

students to write explanations for their answers.  

We conducted in-depth interviews with 15 students selected from three 

different achievement brackets, high, average, and low, as assessed by the 

instructors. There were 5 high-achieving students and three low-achieving 

students. The rest were average-achieving. We used the listing that the 

instructors provided us; they relied on the grades students obtained in their 

first test. 

The in-depth interview had three parts. First we asked specific 

questions about students’ responses in their paper and pencil test, to obtain 

more information about their thinking. Second we inquired about the use of 

different methods to solve trigonometric problems (e.g., unit circle, triangles, 

graphs, graphing calculators, etc.) in order to test conjectures about their 

  



cos(cos1(x) )x 1x1

cos1( cos(x) )x 0 x
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understanding of these foundational ideas for trigonometry. Third, we 

discussed students’ interpretation of the identity question (see  

Figure 1). Only 10 students answered this question (4 trigonometry, 2 

pre-calculus, 4 calculus, mean age = 22 years, sd = 6.57 years). Because of the 

complex nature of the statement in the Identity Question, we anticipated that 

students would need to coordinate several foundational notions in order to be 

able to answer the two prompts successfully (Thompson, Carlson, & 

Silverman, 2007). As part of the interview, and prior to asking the identity 

question, we had the students watch Elizabeth’s class explanation of the 

meaning of f
-1

(f(x)) = x.  

Participating faculty members, Emmett and Elizabeth, were 

interviewed six times, throughout the year, either individually or in pairs. In 

the first joint interview, we asked Emmett and Elizabeth to anticipate 

students’ answers to the tasks we had posed on the paper and pencil test and 

during the interviews.  At this point we did not share any of our findings from 

students’ paper and pencil tests and interviews data with the instructors as our 

goal was to identify of the teachers’ own knowledge about their students’ 

understanding of the topics of interest. During an individual interview we 

asked teachers to comment on the type of explanations they would present in 

class.  

 

Data Analysis 

Student paper and pencil test analysis. The test data were summarized 

to create reports for each of the participating instructors. The reports indicated 

how many students answered each of the questions correctly and the common 

mistakes students had made. For example, in the report for Emmett we stated: 

 

Calculus, Fall 2009. 19 students returned the questionnaire. 
Question 1: 

Part a asked students to find f(g(x)) given the two functions, f(x) = 2x + 1 and 

g(x) = x
3
. Two students interpreted the composition as multiplication. The 

rest of the students obtained 2x
3
 + 1. Part b asked students to explain to 

another student how to find the composition. Students gave explanations 

consistent with their responses to part a (substitute x
3 
into x in f, multiply the 

2)
. 
Part c asked whether f(g(x)) = g(f(x)) and to explain why. One student 

gave no explanation; another said “I don’t know.” Three provided a negative 

answer (not the same) and showed by doing both compositions. Of the 

students who multiplied one said the answer was the same, the other said that 

the two functions (f and g) were different, so they were not the same. Three 

students indicated that in order for the equality to hold, the functions have to 

be inverses of each other.  
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Question 2. 

This question asked to create the graph of sin
-1

(x) given the graph of sin(x). 

Four students graphed –sin(x). Four students produced a flipped version of a 

sine over the y-axis but did not restrict the range or domain. Six created a 

correct inverse, restricted, but they omitted the values on the axis or did not 

switch the values on the axis; four produced a correct graph, and one graphed 

cosecant (incorrectly joining the asymptotes, suggesting a calculator issue). 

Many answers suggest use of calculator in generating the graph. 

Question 3. 

Part a asked students to identify the errors students made in finding cos(sin
-

1
(1/2)). Three options were given. Most of the students correctly identified 

the problems students made. Part b asked for a solution with sketches. Five 

students provided no answer to the question. Four students produced an 

incorrect response (2 assumed sin
-1

(x) was csc(x), one interpreted sin
-1

 as cos 

and composition as multiplication, consistent with the answer to question 1, 

one interpreted sin
-1

(x) as secant (1/cos). Nine students provided a correct 

answer, one of them without explanation (suggesting calculator use), 1 

student provided a correct explanation but no solution. 

Summary 

Most students correctly interpret composition of functions. Students with the 

aid of the calculator are able to produce the graph of the inverse sine 

function, but most of them make mistakes in labeling the axis. About half of 

the students can interpret cos(sin
-1

(1/2)) but not many think of a sketch to 

represent the situation. 

 

Student Interview analysis. Similarly to the paper and pencil data, the 

student responses to the interviews were summarized for each of the 

questions, across students to gather a general understanding of what appeared 

to be the common knowledge. The following passage illustrates the summary 

statement for the interview question that asked for the graph of inverse sine, 

given the graph of sine: 

 
The student understands the term ‘inverse’ to mean ‘opposite’ in a graphical 

way, and unsuccessfully tries to use this definition to plot so points of 

y=arcsin(x). The student’s conception of this graph is logical, but does not 

comply with the rules of trigonometry... The student does not seem to 

understand the idea of the domain of a function and its effect on the inverse 

of the function.  He thinks that if the input is outside the domain of a 

function, then it must be in the input of the inverse function… The student 

appears to understand that in f(g(x)), the output of the inner function g(x) 

becomes the input of an outer function f(x), but doesn’t understand how to 

relate that knowledge to the range of the outer function. Summary: It is very 

unclear from this section if the student actually knows what the terms 

‘domain’ and ‘range’ mean in a functional/graphical sense…The student 

does not seem to grasp the connection between the range of y=sin(x) and the 

domain of y=arcsin(x). He looks for patterns in the numbers of the range of 

each function, but this confuses him more because he cannot find a pattern. 
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These summaries were compiled for all of the interviewed students to 

allow for a cross-comparisons by question and by student.  

Teacher Interview analysis. The focus of our analysis was on what the 

participating instructors anticipated about students’ responses. In this paper 

we focus only on passages devoted to the Identity Question to identify the 

professional obligations instructors were responding to. The passages were 

analyzed thematically (Corbin & Strauss, 2008) to identify teachers’ 

obligations as they commented on the tasks, specifically attending to (1) how 

they interpreted the statement, in particular focusing on its role in the 

curriculum (an institutional obligation) and the mathematics (a disciplinary 

obligation) and (2) how they interpreted students’ responses to the Identity 

Question, as these spoke about their position regarding individual students’ 

understanding (an individual obligation) or what they saw as their roles as 

teachers in classrooms teaching the ideas related to the Identity Question (an 

interpersonal obligation). 

 

Results 

 

We will present first on our findings relative to the analysis of paper 

and pencil data and then interviews with students, specifically what they 

understood about inverse trigonometric functions A discussion of findings 

regarding the teachers’ responses to the students’ data will follow. 

 

Students’ Understandings  

Our analysis of the students’ responses to the paper and pencil test and 

interview data revealed that the sampled students’ understanding of the 

identity question was based on incomplete conceptions about composition, 

inverse functions, injective (one to one) functions, domain, range, and angle 

measures. The interviewed students appeared to experience difficulties with 

identifying composition as an operation between functions; recognizing that 

the identity for the operation of composition is f(x) = x, and thus that a 

bijective (one-to-one and onto) function composed with its inverse results in 

that identity interpreting inverse of trigonometry functions, in particular the 

need to restrict the function so that it is one-to-one so and can have an inverse; 

recognizing the nature of the statement as a statement of truth and the role of 

the restrictions for making that statement true; managing and understanding 

the relationship between multiple representations; choosing examples to 

justify a statement, without attending to the correctness of the example ; and 

using and interpreting radians, degrees, angles, axis, and periods. 

The following excerpt, in which one student participant described what each 

statement in the Identity Question meant to her, illustrates some of these 

issues. In this description we recognize the difficulties associated with the 
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identification of composition, restricting input values, and the selection of 

examples: 

 
 STUDENT: This [line 1 in the Identity Question] is saying that the domain 

for the inverse cosine is in between negative one and one and this [line 2 in 

the Identity Question] is saying that the domain of the cosine is between zero 

and pi because this [cos(x)] is the one that we are evaluating first here [line 1] 

and this [cos(x)
-1

] is the one that we are evaluating first here [line 2]. The 

inverse cosine is giving you like one over cosine where x is the inverse 

cosine of x [writes 1/cos(x) = cos
-1

(x)]. So in doing that you end up with like 

an indeterminate function if you have your value outside of this [the 

intervals]… [a value that] does not exist… it gives you error messages 

because you can’t divide by zero. 

Notice that in the above statement the student recognizes the 

importance of the order in which composition is applied: “this is the one we 

are evaluating first,” by which she means to calculate cos(x) first, then take 

the reciprocal (multiplicative inverse) to apply cos(x)
-1

. But the idea of 

reciprocal suggests the need to restrict the domain of the function, in this case, 

restricting x is associated with avoiding a value—namely 0 in the 

denominator—that “does not exist… it gives you error messages because you 

can’t divide by zero.” 

A casual inspection of the description might convey the notion that the 

student can identify key markers of the work embedded in the task: in 

composition one looks at the order of the functions to decide when to apply 

them and there are domain issues that one must attend to. However, the closer 

look also suggests that the notion of inverse for composition is meshed with 

notions of multiplicative inverses (or reciprocals), driven by the notation used 

(cos
-1

(x)). Using arcos(x) might have prompted a different response.  This 

suggests to us that the ideas of composition of functions, as an operation was 

weakly understood by the student. We anticipated that these difficulties and 

the possible sources (e.g., the notation for inverses under composition and of 

multiplicative inverses is the same in texts, -1, but they refer to different 

objects) would also give instructors a space for suggesting instructional 

changes. We had anticipated that the students’ misuse of terminology and 

procedures would prompt some discussion among the participating teachers. 

 

Teacher Interviews 

Recall that we interviewed the instructors twice, once before the 

interviews with the students to inquire about the potential difficulties their 

students would have had with the content under consideration, and once with 

the summaries of the students’ responses to the paper and pencil tests and the 

prompts used during the interviews with them. During each of the interviews 

we asked the teachers to answer the identity question and they produced 

explanations that addressed four mathematical foci: (1) the identity is a 

particular case of f
-1

(f(x)) = x; (2)  trigonometric functions are periodic  and 



Mesa & The Teaching Mathematics in Community Colleges Research Group                     103     

 

not one-to-one; therefore one must restrict the functions to obtain inverses; (3) 

when dealing with inverses, “one function undoes the other,” which is why x 

is obtained; and (4) the different values in the two intervals stem from the 

different order in which the functions are composed. Neither of the instructors 

however, explicitly indicated that the restrictions in each line operated 

differently: While the restriction in the first line is needed to ensure that the 

inverse function can be calculated, the restriction in the second line is needed 

in order to ensure that the equality holds (cos(x) takes all real values, cos(2) is 

a number between -1 and 1, and therefore cos
-1

(cos(2)) exists, but it is not 

equal to 2; so one has to exclude numbers larger than 1 and smaller than -1 for 

making the statement true): 
Elizabeth: [we restricted it because] we wanted all of the fabulous function 

properties. So we had to make sure now because of the domain and range 

being switched as long as all the range elements are there, then when we 

switch them all the domain will be complete for our inverse.  So this is just a 

restricted domain. I would, again, refer to a picture [of the unit circle], right?  

Emmett: The inner function here [second line] is cosine.  Although x can be 

anything from minus infinity to plus infinity it won’t work because it’s not a 

one-to-one function.  Its inverse is not a function. 

 

In our sample of 10 students who answered the Identity Question, only one 

student had a similar realization than that of the teachers. Teachers’ 

anticipations about the mistakes students would make were ambiguous,  
 

Elizabeth: [students would say] this is going to be really hard to remember 

(…) this is confusing to remember.’ And I tell them absolutely, yes, I agree.  

It is confusing to remember but it’s easy to know (…) I think that what 

they’re probably going to think is that all the xs that come out are going to be 

between zero and pi (…) I think to them they’re going to look at this as ‘oh 

this is just an observation’ right? x is just going to come out like this. That 

would be my guess.  I’m not positive. 

 

Elizabeth’s statements suggest that she considered  students would read the 

intervals as the range of the statement rather than as the domain of the inverse 

functions. When pressed for elaboration Elizabeth indicated that she believed 

the students would see the intervals as “outcomes” of the statements. Emmett 

thought that students would have no problems with the first statement.  He did 

raise concerns about the second statement:  

 
Emmett: So they might say, ‘Why do we even have this restriction?’ The 

second one. The first one I think they’d understand (Elizabeth: Yeah) 

because it’s an inverse cosine. (Elizabeth: I agree) minus one-to-one no 

issues, but the second one they might say well, why? We tried some 

examples.  Then we tried one that worked. I tried one in that range but I tried 

one not in the range. And then I asked them ‘why did the calculator give you 

a different number?’ And that different number that the calculator gives them 
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is actually within this range. So the outcome is always going to be between 

zero and pi and it just has to do with one-on-one functions. 

 

Emmett said that he had worked this out with his students, picking values 

outside the intervals and asking the students to see what would happen, and at 

the end he indicates that the reason for the restriction is that the function has 

to be one-to-one. 

Our interpretations suggest that the teachers’ knowledge of 

mathematics for teaching (Ball, Thames, & Phelps, 2008) regarding the 

sources of the students’ mistakes is not well developed among the 

participating community college instructors. This is not surprising given the 

limited pedagogical preparation that college math instructors have and the 

scarcity of research concerning their pedagogy.  

During the interviews we also presented the teachers with summaries 

of data from their students’ written paper and pencil tests and the student 

interviews. Both teachers were surprised to read the students’ responses and 

attempted to explain the sources of such conceptions. The teachers attributed 

the students’ results to their exposure to curriculum which lacked transparency 

in the notation, and its reliance on technology: 

 
Emmett: even within the course, I do not need to go back to limits all the 

time. I think with inverses is tricky. Because we use -1 for many things, 

exponent and inverse composition.  

Elizabeth:  The trig book we have now… they like to get them pushing 

buttons on page one (Emmett:  Mm-hmm) inverse tangent buttons.  I never 

assign those problems and I tell them don’t even read that stuff because I do 

not want you thinking that you know something about an inverse trig 

function without the full story.  Because it is not a button pushing game. So I 

disagree with our book. 

 

Both teachers also raised issues regarding the influence of the students’ prior 

knowledge and their habits regarding mathematical work:  

 
Emmett: Because of the foundations that they don’t have. I am always telling 

them it’s not just okay to know how to do the problem. You have to do it 

correctly, also. That means avoid algebraic mistakes as much as you can. 

 

When asked for specific actions they could take to address the conceptions 

unveiled through student data.  In response, the instructors suggested concrete 

actions they had taken in the past, rather than devising new models for future 

work: 

 
Elizabeth: what you would do is ask a question: ‘how is your -1 different in 

these two expressions? Tell me the difference between these two identical 

representations.’ That could be a legal question. 
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Emmett:  With my students we already did that. I mean we picked an x 

outside of this interval and it just doesn’t work.  The second [line 2], they get 

something but what they will get is something in this interval.  Always.  The 

first [line 1] doesn’t work out at all you just get, it just shouldn’t.  Because if 

you pick, let’s say inverse cosine of 2 it’s just not going to work.  However 

cosine of 2pi still exists but the inverse cosine of 2pi isn’t 2pi. The inverse 

cosine of cosine 2pi isn’t 2pi because that’s outside the range. So it takes you 

back to zero.  I’ve even tried examples and I ask them this question.  I said: 

‘if you take a number and you apply one function to it and then its inverse it 

should get you back to that number.’ 

 

When asked about students’ difficulties with composition of functions, 

a topic covered in an earlier pre-requisite course, both instructors indicated 

that the textbook the department had adopted did not contain an in-depth 

discussion of that particular topic, thus again, a curriculum justification for the 

students’ difficulties was provided. Both instructors indicated that the recent 

change of textbooks (one single textbook for college algebra and pre-calculus) 

and a course organization prompted by the change (to eliminate repetition of 

topics) would better address these misconceptions in the future. 

 

Discussion and Conclusion 

 

In this study we sought to investigate how community college 

instructors teaching trigonometry interpreted information about their students’ 

understanding of inverse trigonometric functions and how they used such 

information to plan their lessons. We learned that the participating instructors 

had limited knowledge of how their students thought and understood 

foundational mathematical concepts—angles, functions, composition, graphs, 

and inverse functions. They attributed the students’ misunderstandings to two 

sources: curricular (how topics are presented and organized), and cognitive 

(inadequate student prior knowledge).   

We found also that the participating instructors could not offer 

suggestions on how the information on students’ knowledge could be used to 

plan their lessons. The instructors responded with ideas they had previously 

used rather than designating new steps they would need to take in the future 

when teaching the same topic.  This suggests that they saw the curriculum and 

the students’ prior knowledge as stronger forces that operate outside their 

control. This perception revealed limited agency on the part of the instructors 

over their professional work. They perceived their responsibility to consist of 

making sure that materials were presented in a common syllabus—a clearly 

outlined institutional obligation, and that is was the students’ responsibility to 

learn the material by attending the lectures, doing the homework, and taking 

exams. These views pronounce the teachers’ recognition of their obligations 

towards institutional requirements (cover the syllabus) rather than 

disciplinary, individual, or interpersonal obligations  
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These results suggest the need to further investigate what should be the 

nature of faculty development in this setting, given that teacher knowledge for 

teaching appears to be weak. It might be possible that by augmenting teacher 

knowledge, the faculty might be able to start shifting their attention to their 

other obligations as they reason through instruction.   
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